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A Helmholtz resonator of fairly arbitrary form is considered. The asymptotic form with respect to a small 

parameter (the linear dimensions of the aperture) is constructed for the scattered field. 

1. FORMULATION OF THE PROBLEM 

SUPPOSE that a bounded region &I CR 3 has a fairly smooth boundary Ia, while I, is obtained from 
I0 by cutting out an aperture w, with linear dimensions of the order of 0 < E 4 1 (a Helmholtz 
acoustic resonator). We will assume that the space is filled with a uniform and isotropic liquid or gas. 

If the value of the normal component of the potential velocity v, = gradu, is specified on the 
surface 

% 
an= / on I‘, (1.1) 

the potential u, is a solution of the Helmholtz equation which satisfies the Sommerfeld radiation 
condition 

(A+k')1c,=0 s&i'\F, 

du, -_ 
ar 

iku, = 0 (r-l) (r - I CG) 

(1.2) 

(1.3) 

and the Meixner condition at the edge of the surface I,. Here and everywhere henceforth n is the 
externalnormalto~,x=(xi,xz,~3),r= 1x1. 

The problem of finding the scattered field u, which occurs when a plane wave ui” = Aoeickx) is 

reflected from an ideally rigid surface I?, , k = 1 k 1 can also be reduced to solving the boundary-value 
problem (l.l)-(1.3). In this case we must putf= -du”‘/dn in (1.1). 

Resonance phenomena in (l.l)-(1.3) arise for k close to k. where ko2 is the eigenvalue of the 
Neumann problem for the Laplace operator in the region 0. In particular, when a plane wave is 
incident, the field reflected from I, differs from the field reflected from Ia by a quantity of the order 
of O(1) as e+ 0. These phenomena were investigated by Helmholtz and Rayleigh [l] for a sphere 
with a small aperture and is still being investigated at the present time (see, for example, [2] and the 
review of the literature contained there). In this paper we consider a resonator of fairly arbitrary 
form. 

tPrik1. Ma!. Mekh. Vol. 56, No. 3, pp. 412-418, 1992. 
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2. FUNDAMENTAL RESULTS 

The resonance phenomena can be explained as follows [3-S]: Green’s function G, (x, y, k) of 
boundary-value problem (l.l)-(1.3) admits of an analytical extension with respect to k into the 
complex plane and has poles T, in the half-plane Imk<O. Some of these poles, in the limit as E+O, 
acquire real values k 0, where ko2 are the eigenvalues of the Neumann problem in R. Also, if kO* # 0 
is a simple eigenvalue (it is this case which we shall be considering), there is a unique pole of the first 
order T,+ k0 as E+ 0. The presence of this pole also explains the resonance phenomena for real k 
close to kO. The expression for the solution of (l. l)-(1.3) in terms of Green’s function gives the 
following representation for it: 

u, (.z,k) = 4b (4 
Te2 - kt 

(Oc (!/)I f (!I) dY + lie (f* 4 (2.1) 

where 2ni+, (x ) & 0,) is the residue of the function G, (n, y, k) at the pole k = T, and the 
quasi-eigenfunction 4, (X ) is the solution of the boundary-value problem (1. l), (1.2) when k = 7, , 

We will denote by I+,,(X) the elgenfunction of the Neumann problem for the Laplace operator in 
Sz, corresponding to the eigenvalue kO*, normalized in L*(a) and extended to zero outside fi. We 
will also denote by UO(x; k) the solution of the boundary-value problem 

which satisfies the radiation condition (1.3). 
It was shown? that &-+$, when E+O in W,’ (Cl) and Wzl (Mfi) 

(2.2) 

(2.3) 

when E-3 0, while U,+ lJO and W,’ (fiti) uniformly with respect to k close to kO, and is bounded in 
W2’ (0) uniformly with respect to E and k close to zero and kO, respectively and K is an arbitrary 
compacturn in R3. 

It is obvious that for k close to k0 the first term in (2.1) makes the main contribution to the 
solution U, . For a more accurate estimate of this contribution it is necessary to know the behaviour 
of T, and & (x) as E+ 0. The asymptotic form of these quantities is constructed by matching the 
asymptotic expansions [6, 71 and is similar in its approach to the construction of the asymptotic 
forms of the eigenvalues of elliptic boundary-value problems in singularly perturbed regions [8, 91. 
We will carry out this construction below. 

Assuming that R in the neighbourhood of the origin of coordinates is identical with the half-space 
x3 >O, o is a two-dimensional region with a smooth boundary in the plane x3 = 0, and O, = 
{x; X&-l E o}, the asymptotic form of the pole T, has the form 

B 

t, = k, + 

T,=II~J,,~(~)c,/(~~~), Im r2=--a(ngo(0)c~)‘,‘IJ (2.4) 

where c, is the capacity of the “plate” w [lo] and u is the transverse cross-section [ll] of Green’s 
function G(x, y, kO) of the Neumann problem for the Helmholtz operator outside Sz when y = 0. 

We have the following expansion for & (x): 

t R. R. GADYL’SHIN, Surface potentials in the problem of the Helmholtz resonator. Unpublished paper, VINITI, 

3 August, 1990, No. 4476-V90, Ufa, 1990. 
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uniform in W2’ ($2) and W2’(A%) for any compactum XC: R’. Here s(t) is a sphere of radius t with 
centre at the origin of coordinates, and Pi(&) are differentia1 poiynomials of the jth order in the 
variable y with constant coe~cients. 

Snppose ~(0) #O. It then follows from (2.1) and (2.4) that resonance phenomena are observed 
to the greatest extent for reai values of 

k=~kete~,+e’(k~-t-r~(l) 1 (2.8) 

If, moreover, 

(2.9) 

then, substituting the asymptotic expansions (2.4)-(2.7) into (2.2) and taking (2.3) into account, we 
obtain the following representation for the solution of boundary-value problem (l.i)--(3.3): 

(2.10) 

which holds for any compacturn KCR3 in Wzl(0), W,‘(K’&). 
The situation is somewhat different when finding the scattered field U, which occurs when a plane 

wave uin is reflected from an ideally rigid surface re, since condition (2.9) is not satisfied. 
Suppose uO(x; k) is the scattered field which occurs outside fl when a plane wave u’“(x; k) is 

reflected from r, [the solution of boundary-value problem (2.2), (1.3) for f= -~u’“/~n], while 
II = uO+tiinin R%l. 

integrating by parts the left-hand side of the equation 

s 
nin (2; k) (A + re2) I& (x) ds = 0 

S(R) 

for fairly large fixed R and taking into account the asymptotic form (2.8) of the function 4, (x), we 
obtain the foliowing relation: 

(2.11) 

We will assume that u (0, kc) ZO while k satisfies relation (2.8). Then, substituting (2.5)-(2.8) and 
(2.11) into (2.1) we obtain the principal terms of the asymptotic form for the scattered field 

u,(x; k)-be-‘~~~(x). xa2\S(e’“): u,(x; k)-be-%,(x/e) 

.r&(%“‘l): ur(x; kf-bP,,G(s, 0, k)fu,(x. ke). r@S’2US(eyf 
b==-u(O. k~)~"{Zk~(T~-k*) I-’ (2.12) 
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Representation (2.12) holds in W,‘(fi) and WZ1(K\LTi) for any compactum KC R3. 

3. CONSTRUCTION OF THE ASYMPTOTIC FORM OF 7. 

We will show that relations (2.4)-(2.7) hold. The series (2.5)-(2.7) were constructed to be 
asymptotically matched at zero: i.e. the double series obtained from (2.5) by replacing its 
coefficients by their asymptotic forms at zero is identical with the double series obtained from (2.6) 
by replacing the coefficients by their asymptotic forms when p = r&-l+ a, &_‘O. Similarly, the 
series obtained from (2.7) by replacing the coefficients by their asymptotic forms at zero is identical 
with the series obtained from (2.6) by replacing the coefficients by their asymptotic forms when 
p+ 03, t390. The series (2.4)-(2.7) cannot be constructed independently of one another. These 
series can only be constructed completely by comparing them. 

The boundary-value problems for the coefficients of series (2.5) are obtained by substituting the 
series (2.4) and (2.5) into (1.1) and (1.2)) by writing the equations separately for the same powers of 
E and passing to the formal limit as E+O 

Similarly, in the variables 5 = X&-I we obtain boundary-value problems for the coefficients of the 
series (2.6). In particular, 

4rVFO gep, av,&,=o g=y (3.2) 

where y = R%.S, R2 is the plane t3 = 0. 
Green’s function G (x, y, k) is continuous for real k and admits of an analytical extension into the 

complex plane, where, in a certain neighbourhood of the real axis, it has no-poles [12, 131. 
Consequently, the series (2.7) is a formal asymptotic solution of Eq. (1.2) outside Q for k = 7,. 

We will expand the eigenfunction *u(x) in a Taylor series at zero 

0,,(3! =90(Ol to(r) (3.3) 

Rewriting (3.3) in terms of the variables 5 = XE-‘, we obtained from the condition for series (2.5) 
and (2.6) to be matched, 

u(l(g~-~,(o), p-m k&O 

There is a density p (5) E C” (w) such that the potential of a simple layer Y (5) with a given density 
is equal to unity on o and belongs to WZ1 (K\q) for any compactum KC R 3 [14]. We will put the 
function vo(c) equal to J10 (0)( 1 - Y (&j/2) for 5 3 2 0 and Y(e)/2 for E3 < 0. By definition v. E WZ1(K\q) 
is a solution of the boundary-value problem (3.3) and, at infinity, has the asymptotic forms 

(3.4) 

Hence, series (2.5) and (2.6) are matched at the first step. 
Rewriting (3.4) in terms of the variables x = 5~ we obtain the principal terms ot the asymptotic 

forms at zero for the coefficients of series (2.5) and (2.7). In particular, 

9, (2) ~--‘L$ (0) c-r-‘. P&(t. 0, r,)-‘/oJh(O)c,r-’ (3.5) 

It follows from the fact that the function G(x, 0, k) is analytical with respect to the variable k in the 
neighbourhood of k. and its asymptotic form is analytical at zero with respect to the variable x that 
Eq. (2.7) holds for PO. 

We will now determine +i (x) and TV. A function X(X) E Cm(lTi\O) exists which is a solution of the 
boundary-value problem 

(3.6) 
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and at zero has an asymptotic form X(x) = r -’ + 0 (1). This assertion can easily be proved by 
putting 

X (z)=r-’ cos k,r+Xo(x) 

where X0(x) E C-(G) [9]. H ence it follows that the function +t (x) = - %c,Jla(O)X(x) is a solution 
of boundary-value problems (3.1) for r1 from (2.4) and has a specified asymptotic form (3.5) at zero. 

By extending the matching it is easy to construct the remaining asymptotically matched coefficient 
*j(X) = 0 (r-j) as r-+0, vi(t) = O(d) f or p -+ co, Pj(D,) G(x, 0, k), which are solutions of the 
recurrent boundary-value problems in the corresponding regions, and the coefficients rj are found 
from the condition for the boundary problems (3.1) to be solvable for $j. 

We will show that (2.5) holds for Imr2. Suppose B(R, t) = S(R)\(RUS(t)). Integrating by parts 
for large R and real k we obtain 

. 
O- Im 

s 
G (x, 0, k) AG (~~0,_k) dz = ho - Im G (0, 0, k) t 0 (R-l) 

R(R, R-1) 

Consequently, as r-+ 0 

Im G(x, 0, k) =ka+O(r) 

Im ePoG (5, 0, k) =E (P,ka+O(r)) (3.7) 

Rewriting (3.7) in terms of the variables .$ we obtain that Imvl (5) --Pok~a as p+ CQ, &SO. The 
boundary-value problem for Im v1 has the form 

A Im u,=O E+v, a Im v,&,=O &q (3.8) 

The function 

Im u1 (E) =$,-I (0)POk,auO(L &, -E3) 

is a solution of boundary-value problem (3.8) and as p+ CQ has the asymptotic forms 

Im u, (E) =‘/gxgO (0) k,ac,zp-‘+O (p-‘) , &a0 

Im ul (E) =z*~ (0) &uc,+O (p-‘) , EGO 
(3.9) 

Rewriting (3.9) in terms of the variables x, we obtain that 

Im r~~~‘/~rr$, (0) k,,uc,Y, r+O 

The boundary-value problem for Imu2, by virtue of (3. l), has the form 

(3.10) 

We will put 

(A+k,*) Im u2 (5) =-Ilk0 lm rZ$,, (z) s&, a Im u,/an=O 
z=ro\o (3.11) 

Im u~=‘/~Tc$~ (0) kouc,‘X (z) 

and ImT2 in accordance with (2.4). Then the function Imu* will be a solution of the 
boundary-value problem (3.11) and will have the asymptotic form (3.10) at zero. 

Hence, we have constructed asymptotically matched series (2.4)-(2.7). It follows from estimates 
made in the paper listed in the previous footnote that the series (2.4)-(2.7) are asymptotic 
expansions of the pole 7, and of the corresponding quasi-eigenfunction a,(x) at these norms. 

The condition of the flattening of the boundary in the neighbourhood of the aperture affects the 
asymptotic form 7,. Suppose the boundary I0 in the neighbourhood of the origin of coordinates is 
given by the equation 

x,=F (x,, x2) =~,z,*+u~s,~+O (f’) 

0. = { x; x3 =F(xr, xt), (5,. zz)a.), l?,=I’o\Gi.’ 
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In this case the asymptotic expansion of the pole 7, , generally speaking, contains powers of In E, 
but mainly 

rc=ko+er,+eZrz+O(e3 In 8) (3.12) 

where the quantities r1 and Imrz satisfy (2.4). 
The absence of logarithms in the lowest forms of (3.12) is explained by the fact that the singular 

solution of boundary-value problem (3.6) and Green’s function G(x, 0, k) has the following 
asymptotic forms at zero [5,15]: 

X(Z) NT-’ +‘I, (~,-a,) (5rf--522) (r+59)-2--1/1 (a,+a,)ln (r+sS) 

2nG (z, 0, k) ar-I-‘/, (a,-~,) (zi2-q2) (r-z3)-2+‘/2(u,+t@ln (r-q) 

By (3.12), the representations (2.10) and (2.12) will hold for real k = k(E) and will have the 
asymptotic form (2.8) as ~-0. 
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